
Effective Strategies for
Reviewing Pull Requests
Having covered how to create efficient Pull Requests, this chapter
shifts focus to the art and science of reviewing them. A well-executed
review process is vital for maintaining code quality and fostering a
positive team dynamic. The following are key strategies and points to
consider for effective PR reviews:

Commenting Efficiently

Politeness and Professionalism in Commenting

Effective communication in PR reviews is not just about what is said
but also how it's conveyed. Maintaining a tone of professionalism and
courtesy in comments is essential, irrespective of how well team
members know each other. Balancing professionalism with a friendly
tone contributes to a positive and productive work environment.

While comments should be professional, they needn't be overly
formal. The goal is to create an atmosphere of mutual respect. Avoid
using profanity or disrespectful language. A constructive, polite tone
goes a long way in fostering collaborative and respectful interactions.

Focus on the Code, Not the Developer

When providing feedback, ensure that your comments are directed
at the code and not the developer who wrote it. This distinction is
crucial, especially when pointing out areas that need improvement or
when discussing contentious topics. By focusing on the code, you



keep the conversation objective and centered on problem-solving.
Let's illustrate this with an example:

Less Effective: “Why did you use threads here when there’s
obviously no benefit to be gained from concurrency?”

More Constructive: “I noticed the implementation uses a
concurrency model. It appears that this adds complexity without
yielding clear performance benefits. Could we explore a simpler,
single-threaded approach here, as it might streamline the process
without impacting performance?”

By using the more constructive approach, you not only pinpoint the
issue but also provide a clear rationale and a potential solution. This
method encourages a dialogue focused on improving the code and
finding the best solution, rather than placing blame or making
personal judgments.

Constructive Feedback

When you disagree with a piece of code, it's important to not only
state your case but also provide an alternative solution if
possible. Explaining why you disagree and suggesting a better
approach can be immensely helpful. Additionally, supplement your
comments with links to internal or external resources when relevant,
as this can provide further context or support for your feedback.

Comment Formatting

Leverage the platform's formatting capabilities to make your
comments clearer and more impactful. For instance, on GitHub, you
can format code suggestions using Markdown syntax, enclosing code
snippets within triple backticks. This approach enhances the
readability and comprehension of your feedback.



Prompt Response and Strategic Review
Management

Some collaboration tools have features to automate the merging of
PRs based on specific criteria, such as receiving a certain number of
approvals. However, this can lead to situations where a PR is
automatically merged while it's still under review, potentially
bypassing crucial feedback. To manage this effectively:

Preventing Premature Merges: Implement additional rules to
control the automatic merging of PRs. For example, you could
set a rule that a PR can only be completed once all comments
are resolved. This gives reviewers a chance to flag that they are
still reviewing the PR. Simply adding a comment like “I’m
reviewing this now” can serve as a marker that the PR is under
active review. Once your review is complete, resolve that
comment to signal that it’s ready for the next steps.
Communicating Availability and Timeframes: If you’re unable
to conduct a full review immediately upon receiving a PR, it’s
helpful to acknowledge its receipt and communicate your
availability. A quick response stating when you plan to review it
keeps the PR author informed and manages expectations. For
example, a simple message like, “Thanks for the PR, I’ll be able
to review it by tomorrow afternoon,” can be very effective.
Recommending Alternate Reviewers: If your schedule doesn’t
permit a timely review, suggest alternative reviewers who might
have the bandwidth to respond more quickly. This approach
helps in maintaining the momentum of the PR process and
ensures that reviews are not bottlenecked.

Minimizing Nitpicking with Automation

In code reviews, dwelling on minor details can slow down the process
and distract from significant issues. Integrating automation into your
workflow can be transformative to overcome this issue. It ensures


